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The concept of stoichiometric number is introduced with special reference to the 
applicability of the classical theorem k’/k” = K to the relation between the forward 
and the backward rate constants, k’ and k”, and the equilibrium constant K. The 
significance of the stoichiometric number rr of the rate-determining step in deter- 
mining the mechanism is illustrated. 

The theoretical background of rr and theorems on Y, derived from its definition 
are reviewed and on their basis the experimental determination of Ye is illustrated 
in several cases. 

The well-known theorem of kinetics 

k’/k” = K (1) 

was derived from the mass action law on 
the tacit assumption that a chemical con- 
version expressed by a chemical equation 
occurs in one act of an elementary reaction 
in either direction, where k’ or k” is the 
rate constant, respectively, of the forward 
or the backward act of the elementary re- 
action, and K is the relevant equilibrium 
constant. 

In the following, the elementary reaction 
will be termed simply “step”; the set of 
particles involved in a step, the “reaction 
complex”; and the reaction complex at the 
state prior to or following the occurrence 
of the step, the “initial” or the “final com- 
plex” of the step, respectively. 

We accept nowadays that a directly ob- 
served chemical conversion expressed by a 
chemical equation is, in general, a resultant 
of a relevant set of steps. The catalyzed 
synthesis of ammonia 

Nz + 3Hz = 2NHa (2) 

may thus be the resultant of the set of 
steps : 

Nz + 2N(a) 1 (3,N) 
Hg-+2H(a) 3 (3,W 

N(a) + H(a) + NH(a) 2 &NW 
NH(a) + H(a) + NHz(a) 2 (3,NHz) 
NH2(a) + H(a) -+ NH3 3 (3,NHs) 

where (a) denotes the adsorbed state of an 
atom or an atom group on the catalyst. We 
see immediately that the occurrence of each 
step multiplied by the number of times 
indicated on the right results in the chemi- 
cal conversion of Eq. (2) without ulti- 
mately consuming or creating any of the 
intermediates, N(a), H(a), NH(a), and 
NH, (a). We will call the directly observed 
chemical conversion expressed by a chemi- 
cal equation, e.g., Eq. (2), simply an 
“over-all reaction.” 

Now the question arises whether the 
classical theorem would hold even in the 
case of an over-all reaction composed of 
steps. This question has been discussed by 
Temkin and Pyahev (I), by Manes et a2. 
(5’) and by Frost and Pearson (3) with 
the conclusion that the classical theorem 
holds only in particular cases. We might 
first deduce some valid relationships be- 
tween the rate constants and the equilib- 
rium constant in the particular case of 
Eqs. (3). 
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In equilibria of all steps of Eqs. (3), we 
have 

k’NaeNz = k’lN (aeN@))O 
klHacHz = k”H(aeH(a))2 

kfNHaeN(a)aeH(a) = k”NHa,NH(d 
klNHIaeNH(a)a,H(a) = k”NHlaeNHt(a) 
kfNHtaeNHt(a)aeH(a) = k”NH8a,N1r3 

where hYN, etc., or JcftN, etc., are the forward 
or the backward rate constants of steps 
(3,N), etc., and aeNz, etc., are the activities 
uN2, etc., of N,, etc. at the equilibria, re- 
spectively. Raising both sides of each of 
the above five equations to the power of the 
indicated number in Eq. (3) and equating 
the products of the respective sides of the 
equations, we have 

where the second member equals the ther- 
modynamic equilibrium constant of the 
over-all reaction, which is, of course, in 
equilibrium in this case. We see readily 
that the foregoing equation is generalized 
as (4) 

s 

I-l (k’Jk”J”# = K (4) 
s=l 

where k,’ or k,” is the rate constant of sth 
constituent step (s = 1, . . . , S) , yg is the 
number of times that the sth step occurs, 
e.g., 1,3,2,2, and 2 for the steps of Eqs. (3) 
to complete the over-all reaction, and K 
is its equilibrium constant. Equation (4) 
shows that the classical theorem, Eq. (1)) 
holds in the particular case where S = 1 
and vg = 1. The vs is the stoichiometric 
number (6-8) of the sth constituent step. 

We now examine, alternatively, the case 
where there exists a rate-determining step. 
Let, e.g. Eq. (3,H) be the rate-determining 
step. The forward unidirectional rate V’ of 
the over-all reaction, Eq. (2), is propor- 
tional to the activity of H,, i.e., 

V’ = kr@ (5, V’) 
where k’ is the observable forward rate 

constant in this case. The backward uni- 
directional rate Vtr is proportional to the 
square of the activity aH@) of H(a), i.e., 

Steps other than the rate-determining one, 
Eq. (3,H), are approximately in equilib- 
rium, so that 

aNr 0~ (#Cd)2 #(daH(d x aNH(4 

@HkdaH(a) o( #Hz(a) aNH~b)aHb) z aNHa 

From the above five relations we have, 
by eliminating aN@), aH@), aNw@, and 
aNH2(a) 

V” = k”(aNIIa)2/3/(aNz)1/3 (5,V”) 

where the proportionality constant Ic”’ is 
the observable backward rate constant. 
Putting V’ = V” for the equilibrium of the 
over-all reaction, we have from Eqs. (5) 

,‘/,” = KU3 
(64 

on the basis of K as already defined. 
Assuming Eq. (3,N) as the rate-deter- 

mining step instead, we have similarly 

k’/k” = K (6b) 

where k’ or k” is the forward or backward 
rate constant observable in this case*. Eq. 
(6,b) is in accordance with the classical 
theorem, Eq. (l), but the rate-determining 
step of Eqs. (3,NH) or (3.NH,) or (3.NH,) 
leads commonly to the equation 

,f/,f, = KU2 03~) 

We see from Eq. (6) that the exponent to 
K is the reciprocal of the stoichiometric 
number v,. of the rate-determining step T, 
i.e., (8,9) 

,,/,I$, = Kl/v, (7) 
It is seen that the classical theorem, Eq. 

(1)) does not necessarily hold in the general 
case of over-all reactions composed of 
steps, that the relation valid in the latter 
case includes stoichiometric .numbers, and 
that the observation of Ye provides us a 
sound diagnosis of mechanism ; if, for in- 
stance, we find V, = 1 or 3 with regard to 

*The rate constant k’ or k” depends, respec- 
tively, on the ratedetermining step. 
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Eq. (2), the rate-determining step is de- 
cided to be Eq. (3,N) or Eq. (3,H), respec- 
tively, and if Y,. = 2, the rate-determining 
step is decided to be Eq. (3,N) or Eq. 
(3,H), respectively, and if vI = 2, the rate- 
determining step is confined to one of Eqs. 
(WH), WQL), and &NH,). 

We might review in what follows the 
theoretical background of v~, theorems on 
Ye, and the experimental determinations of 
v7. based on the theorems. 

THEORETICAL BACKGROUND 

The set, Eqs. (3), of steps each multi- 
plied by the appropriate vg indicated on 
the right adds up to the chemical equation, 
(2), whereas the same set, Eqs. (3), of 
steps each multiplied by one-half of the 
relevant vx adds up similarly to the chem- 
ical equation 

whose coefficients are commonly one-half 
of those of Eq. (2). The latter chemical 
equation is, however, identical with Eq. 
(2) with regard to the material balance. 
A set of stoichiometric numbers, which dif- 
fer only by a common factor, leads thus to 
the same material balance; the set of 
stoichiometric numbers is said to define a 
reaction route (4). Definite values of the 
stoichiometric numbers should, of course, 
be referred to a chemical equation of 
definite coefficients. 

In general, 
P=S-I (8) 

gives the number of different reaction 
routes for S kinds of steps and I kinds of 
independent intermediates involved (7,8). 
The number I of independent intermediates 
is exemplified as follows. Consider the 
Nernst chain, consisting of steps 

H + Cl2 -+ HCl + Cl 

Cl + H2 -+ ClH + 1-I 

The amount of intermediate Cl formed by 
the steps is given by n1 - n,, whereas that 
of the other intermediate H formed by 
n, - n,, where n, or n2 is the number of 
occurrences of the first or the second step 
of the Nernst chain, If eit,her n, -n, or 

n1 - n, is given, the other is, of course, 
fixed. In such a case, the two intermediates 
are termed not independent, but only one 
of them is independent. In general, the 
amounts of respective intermediates formed 
are given as homogeneous linear functions 
(7,B) of the numbers of occurrence of the 
steps, e.g., n, - n, or n2 -n, in the above 
example. Let I’ be the number of such 
homogeneous linear functions each appro- 
priate to an intermediate and I (< I”) 
among them, designated as those of I- 
group, have the following properties (4) : 
(i) none of the homogeneous linear func- 
tions of the I-group is given as a linear 
combination* of the rest of the same group, 
and (G) any of I” - I homogeneous linear 
functions, which do not belong to the I- 
group, if any, is given as a linear combina- 
tion of those of the I-group. We then term 
Z the number of independent intermediates. 
The number I is algebraically determined 
for any given set of steps (7,8). 

Particularly, for the set, Eqs. (3), we 
have I 1 I’ = 4. Since S = 5 for Eqs. (3), 
we have P = 1 according to Eq. (8), hence 
the reaction route is unique in this case. 

On the basis of the general theory leading 
to Eq. (8), it is generally shown that (4) 

s 

n (k’,/k”,) V&(P) = K(p) p = 1, . . . , P. 
s=l 

where va(P) is the stoichiometric number of 
the sth step relevant to the pth reaction 
route and K(P) is the equilibrium constant 
of the over-all reaction, which results from 
the pth reaction route. The above theorem 
implies Eq. (4) as its special case, where 
P = 1. 

However, the current concept of rate- 
determining step is only reasonably intro- 
duced into the case of P = 1. 

It is a problem yet to be solved, whether 
the concept of the rate-determining step 
could be established in the other case, 
where P > 1. Simple introduction of the 
concept into the latter case may result in 
a confusion as exemplified below. 

*Each of m - 122 and ti - n1 is a simple ex- 
ample of the linear combination of the other. 
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Consider a set of steps 

y(l) y(2) 2y(2) _ y(l) 

H++e-+H(u) 2 1 0 
2H(a) -+ Hz 1 0 -1 

H(a) +H++e+Hz 0 1 2 

where E is the metal electron of a hydrogen 
electrode and the only intermediate is 
H(a), which is, of course, independent. 
P + 2 in this case according to Eq. (8). 
The two reaction routes may be v(l) and 
vt2), specified as above by the respective 
sel, of stoichiometric numbers 2, 1, 0, and 
1, 0, 1 each designated under the notation 
of the approplrate reaction route on the 
right of the scheme of the relevant step. It 
may be noted that either reaction route, 
v(l) or vt2), results in the hydrogen elec- 
trode reaction 

2H++2e=Hz (9) 

We might now examine the statement 
that the above over-all reaction occurs con- 
currently through both the reaction routes, 
v(l) and vt2), respectively, with the rate 
governed by the same step, H+ + E + H (a). 
This statement would seem at first sight 
reasonable, but is associated with the fol- 
lowing contradiction. The second and third 
steps, 2H (a) + H, and H(a) + H+ + c + 
H,, must be far more rapid than the first 
one in accordance with the statement that 
the latter determines t,he rate, in either 
case, of the reaction routes. And the second 
and the third steps alone may give rise to 
the above over-all reaction along the reac- 
tion route 2d2) - v(l) shown above, which 
is the vectorial linear combination of 
41) and d2) with the stoichiometric num- 
bers as the vector components. It follows 
that the over-all reaction should proceed 
far more rapidly through the react,ion route 
2v(2) - +), than concurrently through 
v(l) and d2). The statement is thus self- 
contradictory. 

THEOREMS ON I’+- 

In the case P = 1, we have by definition 
of stoichiometric number 

v = u’(s) ; *“b) s = 1, . . . ) s 

where V is the steady rate of the over-all 
reaction and v’(s) - v.“(s) the net rate or 
the excess of the forward rate v’(s) over 
the backward rate v”(s) of sth step. The 
above equation is written for rth step and 
other s’th ones as 

v = u’(r) - v”(r) = u’(s’) - V”(S’) 
VI V.d 

s’ = 1 , * . * 7 r - 1, T + 1, . . . ) s. (10) 

Let now both u’(T)/v, and v#‘(r)/v, be so 
small as compared with any of v(s’)/v,, 
and 21”(~‘)/~,~ that the following conditions 
are practically fulfilled: 

(i) The reaction is practically completed 
in either direction as soon as T takes place 
vr times in the appropriate direction. 

(ii) The ratio of v’(s’) to v”‘(d) is nearly 
unity. 

It follows from (i) that the unidirec- 
tional rate V’ or I’#’ of the over-all reac- 
tion is given as 

V’ = v’(r)/v, V” = v”(?-)/V, 
(ll,V’), (11,V”) 

Hence according to Eq. (10) 

v = V’ - V” (12) 

The forward and backward rates, v’ and 
v”, of a thermal step are now statistical- 
mechanically expressed as (6,10,11) 

2)’ = &W/h) exp(- *) (13,~’ 

V I’ = fc(kT/h) exp (- ‘g), (13,~“) 

where K is the t.ransmission coefficient, k or 
h the Boltzmann or Planck constant*, p* 
the chemical potential of the critical com- 
plex, and $ or pF the chemical potential 
of the initial or the final complex, respec- 
tively. It is noted just for the present appli- 
cation that (6,10,11) v’ and w” and the 
chemical potentials ,u*, $, and pF are re- 
ferred to the system, in which the step of 
interest is going on and that (6, 10,ll) p” 

*The h will denote the Planck constant here 
only, but the amount of hydrogen everywhere 
else. 
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as well as K is common to v’ and z?’ of the 
same step. 

We have thus from Eq. (13) for 8th step 

In v’(s)/v”(s) = -AF(s)/RT (14a) 

where 

(14b) 
is by definition the increment of the free 
energy of the system of interest per mole 
occurrence of the sth step. It follows from 
(ii) and Eq. (14a) on the one hand ap- 
proximately that 

AF(s’) = 0 WV’) 
and from Eqs. (11) and (14a) on the other 
hand that 

In V/V” = -AF(r)/RT (15,r) 

The increment AF of free energy per 
mole occurrence of the over-all reaction 
should be given as the total sum of v,AF(s) 
over s as 

s 
AF = 2 v&‘(s) 

.T=l 

hence it follows from Eq. (15,s’) 

AF = v,AF(r) 

or according to Eq. (15, r) 

In V’/V” = -AF/v,RT (16) 

Further theorems are derived below from 
the fundamental theorem of Eq. (16). 

(A) Eq. (16) is transformed as 
JP/Ji” = (KuL/uR)“U~ 07) 

where Ii is the equilibrium constant of the 
over-all reaction and uL or uR are the activ- 
ity products of the left- or the righthand 
side of the appropriate chemical equation; 
in the case of Eq. (2) for instance, 

I\: = (aeNI13)2/a,N,(a,Mz)3, aL = aN?(aHz)3, 

and aR = @NHs)Z 

Equation (17) is derived from Eq. (16) 
as follows. AF is the difference of t.lle chem- 
ical potential pn of the right,hand side of 
the chemical equation minus the chemical 
potential pL of the lefthand side of the 
same chemical equation, i.e., 

AF = /.L~ - pL 

The pR and ,uL are expressed as 

pR = plR + RT In aR 
cc L = plL + RT In aL 

where pIR and pIL are, respectively, con- 
stant at constant temperature. In equilib- 
rium, we have pR = pL, hence 

ML - pIR = RT In aeR/aeL = RT In K 

AF is expressed by the above four equa- 
tions, as 

AF = RT In aR/KaL (18) 
Equation (17) is obtained by substituting 
AF from Eq. (18) into Eq. (16). 

Manes, Hofer, and Weller (2) have ad- 
vanced the relation V’/V#’ = (KaL/aR)Z 
where Z is supposed to be a simple integer 
or its reciprocal, as an assumption, which 
sticiently fits in with some particular ex- 
amples. Eq. (17) verifies the above equa- 
tion generally, elucidating the physical 
meaning of 2. 

(B) Let the forward rate law be 
,\I 

m=l 

where cP~ is the activity of the chemical 
species B,,, (nz = 1, . . . . , M) involved in 
the over-all reaction, fnl the appropriate 
exponent and lc’ the forward rate constant. 
The backward rate law is readily obt,ained 
by substituting V’ from the shove equa- 
Con into Eq. (17) as 

1”’ = /J/~l/v, n (aB,,~)f~,,/(nL/aR)llu, 

m = 1 

where the constant coefficient k’/K’/‘+ is the 
backward unidirectional rate constant k”‘, 
i.e. 

1;” = ]c’/h’llvr 

which verifies Eq. (7) induced from the 
particular examples. 

(C) Equation (7) leads to the relation 

RT2(d In i?/dT) - RT2(d In k”/dT) 
= (1/vT)RT2(d In KjdP’) (19) 
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between the activation energies and the 
heat of reaction -RT2d In K/dT, which 
should replace the well-known relation 

RT2(d In k’/dT) - RT2(d In k”/dT) 
= RT2(d In K/dT) 

derived from the classical theorem, Eq. (1). 
Boreskov (15’) introduced the concept of 

the molecularity of a chemical species of 
interest involved in an over-all reaction, 
which is experimentally determined, as de- 
duced by him, as the ratio of the lefthand 
side of Eq. (19) to RT2d In K/dT appro- 
priate to the chemical equation of the over- 
all reaction with the coefficient of the chem- 
ical species of interest normalized to unity. 
The molecularity is thus, according to Eq. 
(19), the reciprocal of vy referred to the 
chemical equation normalized as above to 
the chemical species of interest. 

Boreskov (12) defined t.he molecularity 
as the number of the chemical species of 
interest involved in the rate-determining 
step. Equation (2) is now, as it is, nor- 
malized to nitrogen. The molecularity of 
nitrogen is hence 1, l/3, or l/2 by Eq. (19), 
according to whether (3,N) or (3,H) or 
one of (3,NH), (3,NH,) and (3,NH,), re- 
spectively, determines the rate. The first or 
the third value of the molecularity fits in 
with the definition, as N, is involved as a 
whole or by its dissociated half in the re- 
spective rate-determining step, but the sec- 
ond value is not, since no N, is involved 
in the relevant rate-determining step. 

(D) We have from Eq. (16) 

V = -V’,AF/v,RT (20) 

in the neighborhood of equilibrium, where 
V = V’ - V”’ is sufficiently small com- 
pared with V’ or V”‘, hence the latter is 
nearly equal to the unidirectional rate 
V,’ = Vf in equilibrium, by expanding 
the lefthand side of Eq. (16) with respect 
to (V’ - V”) /P’, ignoring the terms higher 
than the first order one and identifying the 
denominator V’ of the first order term with 
V,‘. Equation (20) shows that V is propor- 
tional to the affinity -AF of the reaction 
in the neighborhood of eqnilibrium. 

This theorem was previously stated by 

Prigogine et aE. (1s) based on particular 
rate laws. Equation (20) states it gener- 
ally, irrespective of any particular rate 
law. 

EXPERIMENTAL METHODS OF Ye 

DETERMINATION 

(I) If we are provided with an isotopic 
tracer without any isotopic difference of 
rates, v,. is experimentally determined by 
the method exemplified below by the 
catalyzed synthesis of ammonia. 

Consider that N15-shifted nitrogen, hy- 
drogen, and ammonia is circulated over a 
definite portion of synthetic catalyst 
through a system of definite volume, and 
that the total number n of moles of nitro- 
gen and the N15 atomic fraction ZN in nitro- 
gen or that Z* in ammonia are, respec- 
tively, followed with time t. The rate of 
transfer of N15 from nitrogen to ammonia 
is expressed as -d (2nZN) /dt or as 2ZNV’ 
-2ZAVff’ f so that we have 

-d(nZN)/dt = ZNV’ - Z*V” 

The rate -dn/dt of decrease of nitrogen 
is given as 

-dn/dt = V’ - V” (21) 

We have from the above two equations 

V”(Z* - P) = ndZN/dt (22) 

The total amount aZ* + 2nZN of N15 in 
the mixture is constant and given in terms 
of the constant total amount a + 2n of 
nitrogen atoms in the mixture and the 
atomic fraction Zi at the equilibrium dis- 
tribution of N15 7 as 

aZ* + 2nZN = (a + 2n)Zi (23) 

where a is the total number of moles of 
ammonia in the system.* Admitted that the 
both sides of Eq. (23) are known from the 
initial values of a, n, Z* and ZN, the mo- 
mentary values of V’ and V’“’ are deter- 
mined by Eqs. (21), (22) and (23) from 
observations of n and ZN or 2” at every 

*a, a. etc., in this section, denote the total 
number of moles of ammonia in the system. 
aL and aR, and a,L and a?, however, are the 
activity products of Eq. (17). 
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moment along with the progress of the 
over-all reaction, Eq. (2). 

The corresponding values of aL and uR on 
the righthand side of Eq. (17) are deter- 
mined, identifying activity of the gaseous 
components with relevant concentration, as 

aL = nh3/(p4 
aR = a2/(p2 

where h is the number of moles of hydrogen 
in the system and (p is the volume of the 
system, through which the mixture is cir- 
culated. The equilibrium constant K=u,~/ 
aeL is expressed in accordance with the 
above equations, as 

K = (p2a,2/n,hf (24) 

where suffix e signifies quantities at equi- 
librium. The argument KaL/aR of the right- 
hand side of Eq. (17) is now expressed by 
the above three equations as 

KaL/aR = (n/n,)(h/h~)3/(ala,>2 (25) 
The momentary values h and a are deter- 
mined from the observed momentary value 
of n by the stoichiometric relation in ac- 
cordance with Eq. (2), i.e., 

no - n = (ho - h)/3 = (a - ao)/2, (26a) 

where nO, etc. a.re initial values of n, etc. 
The n,, h,, and a, are evaluated by Eq. 
(24) and the particular case of Eq. (26a), 
i.e., 

no - n, = (ho - he)/3 = (a, - ao)/2 (26b) 

KaL/aR is thus evaluated by Eq. (25), 
hence v,. is determined at every moment at 
a different extent of deviation from equi- 
librium. 

The v7 determination of Eq. (2) by this 
method is now being carried forward by K. 
Tanaka in this laboratory. The vy of the 
same reaction has previously been deter- 
mined according to Eq. (20) by measuring 
V,’ and (V/AF), with the result that vy = 
2 (17). Since then Bokhoven et al. (18) 
modified the latter method and found V~ = 
1. The conflicting results have been dis- 
cussed in further papers (19,dO). 

(II) In the case of an electrode reaction, 
where a tracer without an isotopic differ- 

ence of rate is available, the v7 is deter- 
mined similarly but with AF in Eq. (16) 
expediently expressed in terms of directly 
observable overvoltage I) as 

AF = n.47 (27) 
where F is Faraday and ne the number of 
electrons given out from the electrode for 
every act of the over-all electrode reaction. 

AF is, e.g., AF = pHz - 2(pH+ + p) for 
the hydrogen electrode reaction (9), where 
,.Pz, etc., are the chemical potentials of H,, 
etc. For a reversible hydrogen electrode 
with hydrogen and hydrogen ion, of the 
same chemical potentials, we have 0 = P~J?IZ 
- 2 (pLH+ + ,I.w) , where pee is the particular 
value of ~ELE for the reversible hydrogen elec- 
trode. We have hence AF = 2&e -L p) , 
where pe - pLec is the work required to 
transfer one mole of metal electron from 
the reversible to the test electrode. By the 
definition of overvoltage, 

/LE- /A,’ = -Fv 

hence AF = 2F1p 
(28) 

This argument is readily extended to the 
general case, where AF = WFV. The ne is 2 
for the zinc electrode reaction Zn2+ + 2r = 
Zn, as well as for the hydrogen electrode 
reaction (9), and it is -4 for the oxygen 
electrode reaction, 40H- = O? + II,0 + 
4r. 

Substituting AF from Eq. (27) into Eq. 
(16), we have 

In V/V“ = -n@Fq/v,RT (29) 
The lefthand side of Eq. (29) is determined 
quite similarly as in Section (I) by ob- 
serving isotopic contents of reactants and 
the over-all rate in terms of the electrode 
current. The vy is determined by Eq. (29) 
at every moment at different values of 
overvoltage. 

The determination of V, of the oxygen 
electrode reaction on platinum is being con- 
ducted by T. Kodera in this laboratory by 
the method outlined above, using 018 as 
tracer. 

Losev (14) has observed the transfer of 
radioactive zinc in a zinc amalgam elec- 
trode to N/10 ZnSO, (as.) or its reversal 
simultaneously with the current and over- 
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voltage; this provides a complete requisite 
set of data for determining vr. The lefthand 
side of Eq. (29) calculated from the ob- 
servation (14) was found to vary fairly in 
proportion to the observed 7 and the rele- 
vant value of the proportionality constant 
was found to give y7 = 1 for ne = 2 (15). 
This means that the rate-determining step 
occurs, whatever it may be, once for every 
act of the over-all zinc electrode reaction, 
Zn2+ + 2~ = Zn, amal. 
(III) The v7 determination of the hydro- 
gen electrode reaction is not conducted as in 
(I) or (II) by means of hydrogen isotope 
as a tracer because of the pronounced iso- 
topic difference in rates. The first deter- 
mination of v7 (16) was conducted with 
the hydrogen electrode on platinum by 
means of deuterium as a tracer under the 
assumption that the unidirectional rate of 
deuterium transfer is proportional to that 
of protium over the whole range of 17 
observed. 

An alternative Ye determination of the 
same kind of electrode reaction is now car- 
ried on by A. Matsuda in this laboratory 
without relying upon the above assumption, 
by observing the rate of transfer of sparse 
tritium from hydrogen gas to hydrogen ion, 
or the rate of the reverse reaction. It is 
admitted that (i) tritium participates in 
the hydrogen electrode reaction by the 
same mechanism as the predominant iso- 
tope, i.e., protium, and that (ii) the uni- 
directional rate V’ of tritium transfer from 
the state of ion to that of gas or the V” of 
the reverse reaction depends on, in addition 
to 7, only the tritium fraction in the state 
from which it is transferred. Because of 
the sparse fraction of tritium and (i) 
above, the tritium transfer occurs, prac- 
tically, by the over-all react,ion 

T+ + II+ + 2e = TH 

The ratio of the forward unidirectional rate 
V’ of the latter reaction to that V” of the 
reverse one is given by Eq. (16) in terms 
of the appropriate AF, i.e., 

Aji’ = $IT - $I+ - $‘+ - ‘&t 

Differentiating AF with respect to 7, we 

aAF/aq = 2F 

Hence according to Eq. (16) 

a’ + d’ = 2/v, 

where 

RT a In V’ (y= --- 
F 3 

a 
,, _ RT a In V” --- 

F 871 

The LY’ is determined according to (ii) 
above from the dependence on r) of the 
initial value of I” at a constant tritium 
fraction in hydrogen ion and in its absence 
in hydrogen gas. The Ly)’ is similarly deter- 
mined from the initial rate of tritium from 
hydrogen gas of constant tritium fraction 
to hydrogen ion free from tritium. The v,. is 
thus determined by the above three 
equations. 
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